[]Struct gstreamer::DeviceMonitor

pub struct DeviceMonitor(_, _);

Applications should create a DeviceMonitor when they want to probe, list and monitor devices of a specific type. The DeviceMonitor will create the appropriate DeviceProvider objects and manage them. It will then post messages on its Bus for devices that have been added and removed.

The device monitor will monitor all devices matching the filters that the application has set.

The basic use pattern of a device monitor is as follows:

  static gboolean
  my_bus_func (GstBus * bus, GstMessage * message, gpointer user_data)
  {
     GstDevice *device;
     gchar *name;

     switch (GST_MESSAGE_TYPE (message)) {
       case GST_MESSAGE_DEVICE_ADDED:
         gst_message_parse_device_added (message, &device);
         name = gst_device_get_display_name (device);
         g_print("Device added: %s\n", name);
         g_free (name);
         gst_object_unref (device);
         break;
       case GST_MESSAGE_DEVICE_REMOVED:
         gst_message_parse_device_removed (message, &device);
         name = gst_device_get_display_name (device);
         g_print("Device removed: %s\n", name);
         g_free (name);
         gst_object_unref (device);
         break;
       default:
         break;
     }

     return G_SOURCE_CONTINUE;
  }

  GstDeviceMonitor *
  setup_raw_video_source_device_monitor (void) {
     GstDeviceMonitor *monitor;
     GstBus *bus;
     GstCaps *caps;

     monitor = gst_device_monitor_new ();

     bus = gst_device_monitor_get_bus (monitor);
     gst_bus_add_watch (bus, my_bus_func, NULL);
     gst_object_unref (bus);

     caps = gst_caps_new_empty_simple ("video/x-raw");
     gst_device_monitor_add_filter (monitor, "Video/Source", caps);
     gst_caps_unref (caps);

     gst_device_monitor_start (monitor);

     return monitor;
  }

Implements

DeviceMonitorExt, GstObjectExt, glib::object::ObjectExt

Methods

impl DeviceMonitor[src]

pub fn new() -> DeviceMonitor[src]

Create a new DeviceMonitor

Returns

a new device monitor.

Trait Implementations

impl Clone for DeviceMonitor

fn clone_from(&mut self, source: &Self)1.0.0[src]

Performs copy-assignment from source. Read more

impl Eq for DeviceMonitor

impl Ord for DeviceMonitor

fn max(self, other: Self) -> Self1.21.0[src]

Compares and returns the maximum of two values. Read more

fn min(self, other: Self) -> Self1.21.0[src]

Compares and returns the minimum of two values. Read more

fn clamp(self, min: Self, max: Self) -> Self[src]

🔬 This is a nightly-only experimental API. (clamp)

Restrict a value to a certain interval. Read more

impl Default for DeviceMonitor[src]

impl Sync for DeviceMonitor[src]

impl Send for DeviceMonitor[src]

impl<T: ObjectType> PartialEq<T> for DeviceMonitor

#[must_use] fn ne(&self, other: &Rhs) -> bool1.0.0[src]

This method tests for !=.

impl<T: ObjectType> PartialOrd<T> for DeviceMonitor

#[must_use] fn lt(&self, other: &Rhs) -> bool1.0.0[src]

This method tests less than (for self and other) and is used by the < operator. Read more

#[must_use] fn le(&self, other: &Rhs) -> bool1.0.0[src]

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

#[must_use] fn gt(&self, other: &Rhs) -> bool1.0.0[src]

This method tests greater than (for self and other) and is used by the > operator. Read more

#[must_use] fn ge(&self, other: &Rhs) -> bool1.0.0[src]

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

impl Debug for DeviceMonitor

impl Hash for DeviceMonitor

fn hash_slice<H>(data: &[Self], state: &mut H) where
    H: Hasher
1.3.0[src]

Feeds a slice of this type into the given [Hasher]. Read more

impl IsA<Object> for DeviceMonitor

impl StaticType for DeviceMonitor

Blanket Implementations

impl<T> From<T> for T[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<'a, T> ToGlibContainerFromSlice<'a, *mut GList> for T where
    T: GlibPtrDefault + ToGlibPtr<'a, <T as GlibPtrDefault>::GlibType>, 
[src]

impl<'a, T> ToGlibContainerFromSlice<'a, *mut GArray> for T where
    T: GlibPtrDefault + ToGlibPtr<'a, <T as GlibPtrDefault>::GlibType>, 
[src]

impl<'a, T> ToGlibContainerFromSlice<'a, *const GList> for T where
    T: GlibPtrDefault + ToGlibPtr<'a, <T as GlibPtrDefault>::GlibType>, 
[src]

impl<T> Cast for T where
    T: ObjectType
[src]

fn upcast<T>(self) -> T where
    Self: IsA<T>,
    T: ObjectType
[src]

Upcasts an object to a superclass or interface T. Read more

fn upcast_ref<T>(&self) -> &T where
    Self: IsA<T>,
    T: ObjectType
[src]

Upcasts an object to a reference of its superclass or interface T. Read more

fn downcast<T>(self) -> Result<T, Self> where
    Self: CanDowncast<T>,
    T: ObjectType
[src]

Tries to downcast to a subclass or interface implementor T. Read more

fn downcast_ref<T>(&self) -> Option<&T> where
    Self: CanDowncast<T>,
    T: ObjectType
[src]

Tries to downcast to a reference of its subclass or interface implementor T. Read more

fn dynamic_cast<T>(self) -> Result<T, Self> where
    T: ObjectType
[src]

Tries to cast to an object of type T. This handles upcasting, downcasting and casting between interface and interface implementors. All checks are performed at runtime, while downcast and upcast will do many checks at compile-time already. Read more

fn dynamic_cast_ref<T>(&self) -> Option<&T> where
    T: ObjectType
[src]

Tries to cast to reference to an object of type T. This handles upcasting, downcasting and casting between interface and interface implementors. All checks are performed at runtime, while downcast and upcast will do many checks at compile-time already. Read more

unsafe fn unsafe_cast<T>(self) -> T where
    T: ObjectType
[src]

Casts to T unconditionally. Read more

unsafe fn unsafe_cast_ref<T>(&self) -> &T where
    T: ObjectType
[src]

Casts to &T unconditionally. Read more

impl<Super, Sub> CanDowncast<Sub> for Super where
    Sub: IsA<Super>,
    Super: IsA<Super>, 
[src]

impl<T> ObjectExt for T where
    T: ObjectType
[src]

impl<T> ToValue for T where
    T: SetValue + ?Sized
[src]

impl<T> ToSendValue for T where
    T: ToValue + SetValue + Send + ?Sized
[src]