Files
array_init
bitflags
byteorder
cfg_if
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
lock
sink
stream
task
gio
auto
action.rsaction_group.rsaction_map.rsapp_info.rsapp_info_monitor.rsapp_launch_context.rsapplication.rsapplication_command_line.rsbuffered_input_stream.rsbuffered_output_stream.rsbytes_icon.rscancellable.rscharset_converter.rsconstants.rsconverter.rsconverter_input_stream.rsconverter_output_stream.rscredentials.rsdata_input_stream.rsdata_output_stream.rsdesktop_app_info.rsdrive.rsemblem.rsemblemed_icon.rsenums.rsfile.rsfile_attribute_matcher.rsfile_enumerator.rsfile_icon.rsfile_info.rsfile_input_stream.rsfile_io_stream.rsfile_monitor.rsfile_output_stream.rsfilename_completer.rsfilter_input_stream.rsfilter_output_stream.rsflags.rsfunctions.rsicon.rsinet_address.rsinet_address_mask.rsinet_socket_address.rsinput_stream.rsio_stream.rsloadable_icon.rsmemory_input_stream.rsmemory_output_stream.rsmenu.rsmenu_attribute_iter.rsmenu_item.rsmenu_link_iter.rsmenu_model.rsmod.rsmount.rsmount_operation.rsnetwork_address.rsnetwork_monitor.rsnetwork_service.rsnotification.rsoutput_stream.rspermission.rspollable_input_stream.rspollable_output_stream.rsproperty_action.rsproxy.rsproxy_address.rsproxy_resolver.rsremote_action_group.rsresolver.rsresource.rsseekable.rssettings.rssettings_backend.rssettings_schema.rssettings_schema_key.rssettings_schema_source.rssimple_action.rssimple_action_group.rssimple_permission.rssocket.rssocket_address.rssocket_address_enumerator.rssocket_client.rssocket_connectable.rssocket_connection.rssocket_listener.rssocket_service.rssrv_target.rssubprocess.rssubprocess_launcher.rstcp_connection.rsthemed_icon.rsthreaded_socket_service.rstls_certificate.rstls_client_connection.rstls_connection.rstls_database.rstls_file_database.rstls_interaction.rstls_password.rstls_server_connection.rsunix_input_stream.rsunix_output_stream.rsunix_socket_address.rsvfs.rsvolume.rsvolume_monitor.rszlib_compressor.rszlib_decompressor.rs
subclass
gio_sys
glib
glib_sys
gobject_sys
gstreamer
gstreamer_app
gstreamer_app_sys
gstreamer_audio
gstreamer_audio_sys
gstreamer_base
gstreamer_base_sys
gstreamer_check
gstreamer_check_sys
gstreamer_editing_services
gstreamer_editing_services_sys
gstreamer_gl
gstreamer_gl_sys
gstreamer_net
gstreamer_net_sys
gstreamer_pbutils
gstreamer_pbutils_sys
gstreamer_player
gstreamer_player_sys
gstreamer_rtp
gstreamer_rtp_sys
gstreamer_rtsp
gstreamer_rtsp_server
gstreamer_rtsp_server_sys
gstreamer_rtsp_sys
gstreamer_sdp
gstreamer_sdp_sys
gstreamer_sys
gstreamer_video
gstreamer_video_sys
gstreamer_webrtc
gstreamer_webrtc_sys
lazy_static
libc
muldiv
num_integer
num_rational
num_traits
paste
paste_impl
pin_utils
proc_macro2
proc_macro_hack
proc_macro_nested
quote
serde
serde_bytes
serde_derive
slab
syn
unicode_xid
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
//! Futures-powered synchronization primitives.

#[cfg(feature = "bilock")]
use futures_core::future::Future;
use futures_core::task::{Context, Poll, Waker};
use core::cell::UnsafeCell;
#[cfg(any(feature = "bilock", feature = "sink"))]
use core::fmt;
use core::ops::{Deref, DerefMut};
use core::pin::Pin;
use core::sync::atomic::AtomicUsize;
use core::sync::atomic::Ordering::SeqCst;
use alloc::boxed::Box;
use alloc::sync::Arc;

/// A type of futures-powered synchronization primitive which is a mutex between
/// two possible owners.
///
/// This primitive is not as generic as a full-blown mutex but is sufficient for
/// many use cases where there are only two possible owners of a resource. The
/// implementation of `BiLock` can be more optimized for just the two possible
/// owners.
///
/// Note that it's possible to use this lock through a poll-style interface with
/// the `poll_lock` method but you can also use it as a future with the `lock`
/// method that consumes a `BiLock` and returns a future that will resolve when
/// it's locked.
///
/// A `BiLock` is typically used for "split" operations where data which serves
/// two purposes wants to be split into two to be worked with separately. For
/// example a TCP stream could be both a reader and a writer or a framing layer
/// could be both a stream and a sink for messages. A `BiLock` enables splitting
/// these two and then using each independently in a futures-powered fashion.
///
/// This type is only available when the `bilock` feature of this
/// library is activated.
#[derive(Debug)]
pub struct BiLock<T> {
    arc: Arc<Inner<T>>,
}

#[derive(Debug)]
struct Inner<T> {
    state: AtomicUsize,
    value: Option<UnsafeCell<T>>,
}

unsafe impl<T: Send> Send for Inner<T> {}
unsafe impl<T: Send> Sync for Inner<T> {}

impl<T> BiLock<T> {
    /// Creates a new `BiLock` protecting the provided data.
    ///
    /// Two handles to the lock are returned, and these are the only two handles
    /// that will ever be available to the lock. These can then be sent to separate
    /// tasks to be managed there.
    ///
    /// The data behind the bilock is considered to be pinned, which allows `Pin`
    /// references to locked data. However, this means that the locked value
    /// will only be available through `Pin<&mut T>` (not `&mut T`) unless `T` is `Unpin`.
    /// Similarly, reuniting the lock and extracting the inner value is only
    /// possible when `T` is `Unpin`.
    pub fn new(t: T) -> (BiLock<T>, BiLock<T>) {
        let arc = Arc::new(Inner {
            state: AtomicUsize::new(0),
            value: Some(UnsafeCell::new(t)),
        });

        (BiLock { arc: arc.clone() }, BiLock { arc })
    }

    /// Attempt to acquire this lock, returning `Pending` if it can't be
    /// acquired.
    ///
    /// This function will acquire the lock in a nonblocking fashion, returning
    /// immediately if the lock is already held. If the lock is successfully
    /// acquired then `Poll::Ready` is returned with a value that represents
    /// the locked value (and can be used to access the protected data). The
    /// lock is unlocked when the returned `BiLockGuard` is dropped.
    ///
    /// If the lock is already held then this function will return
    /// `Poll::Pending`. In this case the current task will also be scheduled
    /// to receive a notification when the lock would otherwise become
    /// available.
    ///
    /// # Panics
    ///
    /// This function will panic if called outside the context of a future's
    /// task.
    pub fn poll_lock(&self, cx: &mut Context<'_>) -> Poll<BiLockGuard<'_, T>> {
        loop {
            match self.arc.state.swap(1, SeqCst) {
                // Woohoo, we grabbed the lock!
                0 => return Poll::Ready(BiLockGuard { bilock: self }),

                // Oops, someone else has locked the lock
                1 => {}

                // A task was previously blocked on this lock, likely our task,
                // so we need to update that task.
                n => unsafe {
                    drop(Box::from_raw(n as *mut Waker));
                }
            }

            // type ascription for safety's sake!
            let me: Box<Waker> = Box::new(cx.waker().clone());
            let me = Box::into_raw(me) as usize;

            match self.arc.state.compare_exchange(1, me, SeqCst, SeqCst) {
                // The lock is still locked, but we've now parked ourselves, so
                // just report that we're scheduled to receive a notification.
                Ok(_) => return Poll::Pending,

                // Oops, looks like the lock was unlocked after our swap above
                // and before the compare_exchange. Deallocate what we just
                // allocated and go through the loop again.
                Err(0) => unsafe {
                    drop(Box::from_raw(me as *mut Waker));
                },

                // The top of this loop set the previous state to 1, so if we
                // failed the CAS above then it's because the previous value was
                // *not* zero or one. This indicates that a task was blocked,
                // but we're trying to acquire the lock and there's only one
                // other reference of the lock, so it should be impossible for
                // that task to ever block itself.
                Err(n) => panic!("invalid state: {}", n),
            }
        }
    }

    /// Perform a "blocking lock" of this lock, consuming this lock handle and
    /// returning a future to the acquired lock.
    ///
    /// This function consumes the `BiLock<T>` and returns a sentinel future,
    /// `BiLockAcquire<T>`. The returned future will resolve to
    /// `BiLockAcquired<T>` which represents a locked lock similarly to
    /// `BiLockGuard<T>`.
    ///
    /// Note that the returned future will never resolve to an error.
    #[cfg(feature = "bilock")]
    pub fn lock(&self) -> BiLockAcquire<'_, T> {
        BiLockAcquire {
            bilock: self,
        }
    }

    /// Attempts to put the two "halves" of a `BiLock<T>` back together and
    /// recover the original value. Succeeds only if the two `BiLock<T>`s
    /// originated from the same call to `BiLock::new`.
    #[cfg(any(feature = "bilock", feature = "sink"))]
    pub fn reunite(self, other: Self) -> Result<T, ReuniteError<T>>
    where
        T: Unpin,
    {
        if Arc::ptr_eq(&self.arc, &other.arc) {
            drop(other);
            let inner = Arc::try_unwrap(self.arc)
                .ok()
                .expect("futures: try_unwrap failed in BiLock<T>::reunite");
            Ok(unsafe { inner.into_value() })
        } else {
            Err(ReuniteError(self, other))
        }
    }

    fn unlock(&self) {
        match self.arc.state.swap(0, SeqCst) {
            // we've locked the lock, shouldn't be possible for us to see an
            // unlocked lock.
            0 => panic!("invalid unlocked state"),

            // Ok, no one else tried to get the lock, we're done.
            1 => {}

            // Another task has parked themselves on this lock, let's wake them
            // up as its now their turn.
            n => unsafe {
                Box::from_raw(n as *mut Waker).wake();
            }
        }
    }
}

#[cfg(any(feature = "bilock", feature = "sink"))]
impl<T: Unpin> Inner<T> {
    unsafe fn into_value(mut self) -> T {
        self.value.take().unwrap().into_inner()
    }
}

impl<T> Drop for Inner<T> {
    fn drop(&mut self) {
        assert_eq!(self.state.load(SeqCst), 0);
    }
}

/// Error indicating two `BiLock<T>`s were not two halves of a whole, and
/// thus could not be `reunite`d.
#[cfg(any(feature = "bilock", feature = "sink"))]
pub struct ReuniteError<T>(pub BiLock<T>, pub BiLock<T>);

#[cfg(any(feature = "bilock", feature = "sink"))]
impl<T> fmt::Debug for ReuniteError<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("ReuniteError")
            .field(&"...")
            .finish()
    }
}

#[cfg(any(feature = "bilock", feature = "sink"))]
impl<T> fmt::Display for ReuniteError<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "tried to reunite two BiLocks that don't form a pair")
    }
}

#[cfg(any(feature = "bilock", feature = "sink"))]
#[cfg(feature = "std")]
impl<T: core::any::Any> std::error::Error for ReuniteError<T> {}

/// Returned RAII guard from the `poll_lock` method.
///
/// This structure acts as a sentinel to the data in the `BiLock<T>` itself,
/// implementing `Deref` and `DerefMut` to `T`. When dropped, the lock will be
/// unlocked.
#[derive(Debug)]
pub struct BiLockGuard<'a, T> {
    bilock: &'a BiLock<T>,
}

impl<T> Deref for BiLockGuard<'_, T> {
    type Target = T;
    fn deref(&self) -> &T {
        unsafe { &*self.bilock.arc.value.as_ref().unwrap().get() }
    }
}

impl<T: Unpin> DerefMut for BiLockGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.bilock.arc.value.as_ref().unwrap().get() }
    }
}

impl<T> BiLockGuard<'_, T> {
    /// Get a mutable pinned reference to the locked value.
    pub fn as_pin_mut(&mut self) -> Pin<&mut T> {
        // Safety: we never allow moving a !Unpin value out of a bilock, nor
        // allow mutable access to it
        unsafe { Pin::new_unchecked(&mut *self.bilock.arc.value.as_ref().unwrap().get()) }
    }
}

impl<T> Drop for BiLockGuard<'_, T> {
    fn drop(&mut self) {
        self.bilock.unlock();
    }
}

/// Future returned by `BiLock::lock` which will resolve when the lock is
/// acquired.
#[cfg(feature = "bilock")]
#[must_use = "futures do nothing unless you `.await` or poll them"]
#[derive(Debug)]
pub struct BiLockAcquire<'a, T> {
    bilock: &'a BiLock<T>,
}

// Pinning is never projected to fields
#[cfg(feature = "bilock")]
impl<T> Unpin for BiLockAcquire<'_, T> {}

#[cfg(feature = "bilock")]
impl<'a, T> Future for BiLockAcquire<'a, T> {
    type Output = BiLockGuard<'a, T>;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        self.bilock.poll_lock(cx)
    }
}